Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

6-Amino-3-bromo-1-(2-deoxy-2-fluoro- β-D-arabinofuranosyl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one-acetone-water (1/1/1): a fluorinated 2^{\prime}-deoxyguanosine analogue with the sugar conformation of a ribonucleoside

Junlin He, ${ }^{\mathbf{a}}$ Henning Eickmeier ${ }^{\mathbf{b}}$ and Frank Seela ${ }^{\text {a* }}$

${ }^{\text {a }}$ Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany, and
${ }^{\mathbf{b}}$ Anorganische Chemie II, Institut für Chemie, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
Correspondence e-mail: frank.seela@uni-osnabrueck.de

Received 29 April 2003

Accepted 22 May 2003
Online 30 June 2003
In the title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrFN}_{5} \mathrm{O}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$, the N -glycosylic bond torsion angle, χ, is anti $\left[-108.0\right.$ (4) $\left.{ }^{\circ}\right]$. The sugar pucker is N-type [C^{\prime}-exo, ${ }_{2} E$ with $P=346.5$ (4) ${ }^{\circ}$ and $\tau_{m}=34.5(2)^{\circ}$], and the conformation around the $\mathrm{C}-\mathrm{C}$ bond linking the CH_{2} group and the furan ring is $-s c$ [torsion angle $\left.\gamma=-70.0(4)^{\circ}\right]$.

Comment

The introduction of an F atom into nucleoside molecules leads to compounds with antiviral or anticancer activity (Pankiewicz, 2000). More than 75% of the fluorinated nucleosides synthesized to date contain F atoms at the C^{\prime}-position of the sugar moiety. This modification causes only minor changes to the size of the molecule but strongly influences its physical and biological properties. Thus, the 2^{\prime}-fluoroarabino nucleoside FMAU (2^{\prime}-fluoro-5-methyl- β-D-arabinofuranosyluracil) is an antivirally active compound (Watanabe et al., 1979), while the $2^{\prime}, 2^{\prime}$-difluorocytidine gemcitabine (Hertel et al., 1988) shows anticancer activity. The 2^{\prime}-fluoro substituent can also stabilize the glycosylic bond, thereby increasing the life span of the nucleoside in vivo (Marquez et al., 1990; Singhal et al., 1997). Moreover, the fluorine substituent shifts the conformational equilibrium of the sugar moiety of a nucleoside, depending on its configuration (Guschlbauer \& Jankowski, 1980; Berger et al., 1998; Ikeda et al., 1998; Thibaudeau et al., 1998). Oligonucleotide duplexes incorporating 2^{\prime}-fluoroarabino sugars become susceptible to RNase H cleavage, which makes them useful for antisense therapeutics (Damha et al., 1998; Ikeda et al., 1998; Yazbeck et al., 2002).

The title compound, (I), has been synthesized (He \& Seela, 2003) and its sugar conformation in aqueous solution has been determined as $98 \% N$-type (Van Wijk et al., 1999; He et al., 2003). This behaviour differs from that of most other nucleosides with a fluoro substituent at the 2^{\prime}-up position; for example, the 2^{\prime}-deoxy-2'-fluoroarabinoguanosine (II) shows only a $55 \% N$-conformer population in solution (Tennilä et al., 2000). The conformation of (I) also differs from that of the non-fluorinated compounds (III) and (IV), which show a preferred S conformation [$61 \% S$ for (III) and $64 \% S$ for (IV); Seela et al., 1999] that is typical for 2^{\prime}-deoxy ribonucleosides (Rosemeyer et al., 1997). The unusual conformational properties of (I) in solution prompted us to study its solid-state structure.

(I)

(II)

(III)

(IV)

The orientation of the nucleobase relative to the sugar moiety (syn/anti) of purine nucleosides is defined by the $\mathrm{O}^{\prime}-$ $\mathrm{C}^{\prime}-\mathrm{N} 1-\mathrm{C} 7$ a torsion angle, χ (IUPAC-IUB Joint Commission on Biochemical Nomenclature, 1983). In the crystalline state of (I), the glycosylic bond torsion angle is in the anti range, with χ equal to $-108.0(4)^{\circ}$ (Fig. 1 and Table 1).

Figure 1
A perspective view of the nucleoside moiety of (I). Displacement ellipsoids for non-H atoms have been drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary size.

Compound (III), in which the 2^{\prime}-fluoro substituent is missing, is closer to the high-anti conformation $\left[\chi=-93.2(6)^{\circ}\right.$; Seela et al., 1999]. The more pronounced anti conformation of (I) compared with (III) reflects an intramolecular repulsion between the 2 'fluoro 'up'-substituent and the ring N atom next to the glycosylation position (N2).

The sugar moiety of (I) shows a pseudorotation phase angle, P, of 346.5 (4) ${ }^{\circ}$ and an amplitude, τ_{m}, of 34.5 (2) ${ }^{\circ}$ (Rao et al., 1981), which indicate the N-conformation. The sugar puckering is ${ }_{2} E$, with atom $C 2^{\prime}$ located in the exo position, while atom $\mathrm{C} 3^{\prime}$ is close to the $\mathrm{C} 1^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}$ plane, as indicated by the $\mathrm{C} 1^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}$ and $\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O} 4^{\prime}$ torsion angles (Table 1). Although both (I) and (III) show an N-type sugar pucker, the conformation of (I) is closer to envelope, while (III) shows a twist conformation (${ }^{3} T_{2}$). The $\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$ $\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}$ torsion angle, defined as γ, is also different for these two nucleosides. For (I), angle $\gamma\left[-70.0(4)^{\circ}\right]$ represents a $-s c$ (gauche) conformation, while an ap conformation is observed for (III) $\left[\gamma=-169.2(6)^{\circ}\right]$.

The bond lengths in the sugar moiety are affected only slightly by the 2^{\prime}-fluoro substituent. The $\mathrm{C}^{\prime}-\mathrm{O} 4^{\prime}$ distance in (I) is about $0.03 \AA$ shorter than the $\mathrm{C} 4^{\prime}-\mathrm{O} 4^{\prime}$ distance. This difference is more pronounced than that in (III) $(0.01 \AA)$. The bond angles around the sugar ring vary unevenly compared with those in (III) (Table 1). The length of the $\mathrm{N} 1-\mathrm{Cl}^{\prime}$ glycosylic bond is 1.445 (4) \AA, which is close to that in (III) [1.443 (7) \AA]. The $\mathrm{F}^{\prime}-\mathrm{C}^{\prime}$ distance is similar to $\mathrm{C}-\mathrm{F}$ bonds found in other 2^{\prime}-fluoroarabino nucleosides (Birnbaum et al., 1982) and 2^{\prime}-fluoro ribonucleosides (Suck et al., 1974; Hakoshima et al., 1981). The atoms of the pyrazolo[3,4-d]pyrimidine ring system of (I) are coplanar; the least-squares deviations of the ring atoms range from -0.021 (3) to 0.027 (4) \AA, with an r.m.s. deviation of $0.017 \AA$. The bromo

Figure 2
The crystal packing of (I), viewed along the b axis, showing the intermolecular hydrogen-bonding network.
substituent and $6-\mathrm{NH}_{2}$ group deviate from this plane by 0.026 (5) and 0.054 (6) \AA, respectively.

Compound (I) was crystallized from aqueous acetone, and one acetone molecule and one water molecule are found in the asymmetric unit. An intermolecular three-dimensional hydrogen-bonded framework is observed, which involves the nucleoside molecules and the solvent molecules (Fig. 2 and Table 2). One water molecule donates two H atoms, viz. one to the 4-oxo group of (I) and one to the oxo group of an acetone molecule, and accepts another two hydrogen bonds, viz. one each from the $3^{\prime}-\mathrm{OH}$ and $5^{\prime}-\mathrm{OH}$ groups of the sugar moieties of two neighbouring nucleoside molecules. The nucleoside molecules are linked by three intermolecular hydrogen bonds; the $6-\mathrm{NH}_{2}$ and $5-\mathrm{NH}$ groups interact with the $3^{\prime}-\mathrm{OH}$ and $5^{\prime}-\mathrm{OH}$ groups, respectively, of the same neighbouring nucleoside molecule, and the $6-\mathrm{NH}_{2}$ group has a second intermolecular interaction involving the $5^{\prime}-\mathrm{OH}$ group of a different neighbouring molecule. The F atom of the sugar moiety of one nucleoside molecule is within the van der Waals contact distance of the bromo substituent of a second molecule [3.115 (4) Å].

Although (I) can be considered as a derivative of 2^{\prime}-deoxyguanosine, (I) shows the sugar conformation of a ribonucleoside. This conformation is not just observed in the solid state; an N-conformer population of nearly 100% is also found in solution, which is uncommon for nucleosides with a 2^{\prime}-up fluoro substituent (He et al., 2003). This unusual N-conformation is probably due to the counteractive influence of the gauche effect of the 2^{\prime}-fluoro atom and the anomeric effect of the nucleobase with the N atom next to the glycosylation side (Plavec et al., 1996). We have therefore looked for other compounds showing the same properties and found that the 2^{\prime}-fluoroarabino derivative of 6 -aza-2'-deoxyuridine exhibits such behaviour (He \& Seela, 2003).

Experimental

Compound (I) was prepared as described by He et al. (2003). Lightyellow crystals (m.p. 535 K) were grown from aqueous acetone. For the diffraction experiment, a single crystal was fixed at the top of a Lindemann capillary with epoxy resin.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrFN}_{5} \mathrm{O}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=440.24$
Monoclinic, $P 2_{1}$
$a=10.8449$ (10) \AA
$b=7.3649$ (9) A
$c=11.1537$ (17) \AA
$\beta=90.182$ (8$)^{\circ}$
$V=890.86(19) \AA^{3}$
$Z=2$
$D_{x}=1.641 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 39 reflections
$\theta=5.0-14.0^{\circ}$
$\mu=2.36 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Transparent plate, light yellow
$0.54 \times 0.34 \times 0.26 \mathrm{~mm}$

Data collection

Bruker P4 diffractometer

$2 \theta / \omega$ scans

Absorption correction: ψ scan
(SHELXTL; Sheldrick, 1997)
$T_{\text {min }}=0.193, T_{\text {max }}=0.456$
3029 measured reflections
2639 independent reflections
2466 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.017 \\
& \theta_{\max }=28.0^{\circ} \\
& h=-14 \rightarrow 1 \\
& k=-9 \rightarrow 1 \\
& l=-14 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.124$
$S=1.16$
2639 reflections
251 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0927 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.83 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.88$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.152 (9)
Absolute structure: Flack \&
Bernardinelli (2000); 328 Friedel pairs
Flack parameter $=0.009(11)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 3$	1.867 (3)	$\mathrm{C} 1^{\prime}-\mathrm{O} 4^{\prime}$	1.415 (5)
F1-C2 ${ }^{\prime}$	1.391 (5)	$\mathrm{O}^{\prime}-\mathrm{C} 4^{\prime}$	1.448 (3)
$\mathrm{N} 1-\mathrm{Cl}^{\prime}$	1.445 (4)		
N2-C3-Br1	119.7 (3)	$\mathrm{F} 1-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	112.5 (3)
$\mathrm{C} 7 \mathrm{a}-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 3$	103.7 (3)	$\mathrm{F} 1-\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}$	112.9 (3)
$\mathrm{O} 4^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	103.8 (3)	$\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C1}^{\prime}$	104.9 (3)
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	-0.5 (5)	$\mathrm{F} 1-\mathrm{C}^{\prime}-\mathrm{C3}^{\prime}-\mathrm{O}^{\prime}$	-85.2 (4)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{Br} 1$	179.7 (3)	$\mathrm{N} 1-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}-\mathrm{C4}^{\prime}$	-104.7 (3)
$\mathrm{Br} 1-\mathrm{C} 3-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}$	-179.4 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C1}^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}$	18.1 (3)
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$	-108.0 (4)	$\mathrm{C1}^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	127.1 (3)
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$	62.4 (4)	$\mathrm{C1}^{\prime}-\mathrm{O}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C} 3^{\prime}$	2.9 (4)
$\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{F} 1$	-155.0 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C4}^{\prime}-\mathrm{O} 4^{\prime}$	-22.5 (3)
$\mathrm{N} 1-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}-\mathrm{F} 1$	-33.9 (4)	$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	-143.1 (3)
$\mathrm{O} 4^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}$	-32.2 (3)	$\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{O}^{\prime}$	170.6 (3)
$\mathrm{N} 1-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	88.9 (4)	$\mathrm{C3}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C5}^{\prime}-\mathrm{O5}^{\prime}$	-70.0 (4)

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\prime \mathrm{i}}$	0.86 (2)	2.23 (2)	3.087 (5)	170 (6)
N6-H6A ${ }^{\text {N }} \mathrm{O}^{\text {',ii }}$	0.86 (5)	2.25 (5)	3.117 (6)	178 (6)
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\prime 2}$	0.84 (4)	2.11 (2)	2.932 (4)	167 (6)
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime}{ }^{\prime} \mathrm{B} \cdots \mathrm{O} 21^{\text {iii }}$	0.81 (6)	1.94 (6)	2.749 (5)	172 (7)
$\mathrm{O} 5^{\prime}-\mathrm{H}^{\prime} A \cdots \mathrm{O} 21^{\text {iv }}$	0.81 (6)	1.98 (3)	2.779 (6)	167 (7)
$\mathrm{O} 21-\mathrm{H} 211 \cdots \mathrm{O} 1$	0.97	1.87	2.760 (4)	151
$\mathrm{O} 21-\mathrm{H} 212 \cdots \mathrm{O}^{\text {r }}$	0.96	1.78	2.702 (5)	158
Symmetry codes: (i) $x, y, 1+z$; (ii) $-x, \frac{1}{2}+y,-z$; (iii) $1-x, \frac{1}{2}+y,-z$; (iv) $1-x, y-\frac{1}{2},-z$; (v) $1-x, y-\frac{1}{2}, 1-z$.				

Methyl H atoms were constrained to have an ideal geometry [$\mathrm{C}-$ $\mathrm{H}=0.96 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$ but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bonds. The positions of the amine and hydroxy H atoms were refined freely, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{N})$ and $1.5 U_{\text {eq }}(\mathrm{O})$, respectively. Water H atoms were placed in positions determined from a difference Fourier map and were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{O})$. All remaining H atoms were placed in idealized positions ($\mathrm{C}-\mathrm{H}=0.97-$ $0.98 \AA$) and were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$. The absolute configuration was determined conclusively by this experiment and was found to agree with that expected for a D-nucleoside.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1167). Services for accessing these data are described at the back of the journal.

References

Berger, I., Tereshko, V., Ikeda, H., Marquez, V. E. \& Egli, M. (1998). Nucleic Acids Res. 26, 2473-2480.
Birnbaum, G. I., Cygler, M., Watanabe, K. A. \& Fox, J. J. (1982). J. Am. Chem. Soc. 104, 7626-7630.
Damha, M. J., Wilds, C. J., Noronha, A., Brukner, I., Borkow, G., Arion, D. \& Parniak, M. A. (1998). J. Am. Chem. Soc. 120, 12976-12977.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Guschlbauer, W. \& Jankowski, K. (1980). Nucleic Acids Res. 8, 1421-1433.
Hakoshima, T., Omori, H., Tomita, K., Miki, H. \& Ikehara, M. (1981). Nucleic Acids Res. 9, 711-729.
He, J., Mikhailopulo, I. A. \& Seela, F. (2003). J. Org. Chem. 68. In the press.
He, J. \& Seela, F. (2003). Unpublished.
Hertel, L. W., Kroin, J. S., Misner, J. W. \& Tustin, J. M. (1988). J. Org. Chem. 53, 2406-2409.
Ikeda, H., Fernandez, R., Wilk, A., Barchi, J. J. Jr, Huang, X. \& Marquez, V. E. (1998). Nucleic Acids Res. 26, 2237-2244.

IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9-15.
Marquez, V. E., Tseng, C. K.-H., Mitsuya, H., Aoki, S., Kelley, J. A., Ford, H. Jr, Roth, J. S., Broder, S., Johns, D. G. \& Driscoll, J. S. (1990). J. Med. Chem. 33, 978-985.
Pankiewicz, K. W. (2000). Carbohydr. Res. 327, 87-105.
Plavec, J., Thibaudeau, C. \& Chattopadhyaya, J. (1996). Pure Appl. Chem. 68, 2137-2144.
Rao, S. T., Westhof, E. \& Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.
Rosemeyer, H., Zulauf, M., Ramzaeva, N., Becher, G., Feiling, E., Mühlegger,
K., Münster, I., Lohmann, A. \& Seela, F. (1997). Nucleosides Nucleotides, 16, 821-828.
Seela, F., Becher, G., Rosemeyer, H., Reuter, H., Kastner, G. \& Mikhailopulo, I. A. (1999). Helv. Chim. Acta, 82, 105-124.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Singhal, D., Morgan, M. E. \& Anderson, B. D. (1997). Pharm. Res. 14, 786-792.
Spek, A. L. (1999). PLATON. Utrecht University, The Netherlands. (32-Bit
Windows implentation by L. J. Farrugia, University of Glasgow, Scotland.)
Suck, D., Saenger, W., Main, P., Germain, G. \& Declercq, J.-P. (1974). Biochim. Biophys. Acta, 361, 257-265.
Tennilä, T., Azhayeva, E., Vepsäläinen, J., Laatikainen, R., Azhayev, A. \& Mikhailopulo, I. A. (2000). Nucleosides Nucleotides Nucleic Acids, 19, 18611884.

Thibaudeau, C., Plavec, J. \& Chattopadhyaya, J. (1998). J. Org. Chem. 63, 4967-4984.
Van Wijk, L., Haasnoot, C. A. G., de Leeuw, F. A. A. M., Huckriede, B. D., Westra Hoekzema, A. J. A. \& Altona, C. (1999). PSEUROT6.3. Leiden Institute of Chemistry, Leiden University, The Netherlands.
Watanabe, K. A., Reichman, U., Hirota, K., Lopez, C. \& Fox, J. J. (1979). J. Med. Chem. 22, 21-24.
Yazbeck, D. R., Min, K.-L. \& Damha, M. J. (2002). Nucleic Acids Res. 30, 3015-3025.

